首页> 外文OA文献 >A penalized approach to the bivariate logistic regression model for the association between ordinal responses
【2h】

A penalized approach to the bivariate logistic regression model for the association between ordinal responses

机译:对二元Logistic回归模型的惩罚方法   序数反应之间的关联

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bivariate ordered logistic models (BOLMs) are appealing to jointly model themarginal distribution of two ordered responses and their association, given aset of covariates. When the number of categories of the responses increases,the number of global odds ratios (or their re-parametrizations) to be estimatedalso increases and estimating the association structure becomes crucial forthis type of data. In fact, such data could be too "rich" to be fully modelledwith an ordinary BOLM while, sometimes, the well-known Dale's model could betoo parsimonious to provide a good fit. In addition, when the cross-tabulationof the responses contains some zeros, for a number of model configurations,including the bivariate version of the partial proportional odds model (PPOM),estimation of a BOLM by the Fisher-scoring algorithm may either fail orestimate a too "irregular" association structure. In this work, we propose touse a nonparametric approach for the maximum likelihood estimation of a BOLM.We apply penalties to the differences between adjacent row and column effects.As a result, estimation is less demanding than an ordinary BOLM, permitting thefit of PPOMs and/or the smoothing of the marginal and association parameters bypolynomial curves and surfaces, with scores chosen by the data. Model selectionis based on the penalized log-likelihood ratio, whose limiting distribution hasbeen studied through simulations, and AIC. Our proposal is compared to theGoodman's model and the Dale's model, in terms of goodness-of-fit andparsimony, on a literature data set. Finally, an application on an originaldata set of liver disease patients is proposed.
机译:在给定一组协变量的情况下,双变量有序逻辑模型(BOLM)吸引人,以联合方式对两个有序响应及其关联的模型分布进行建模。当响应类别的数量增加时,要估计的全局比值比(或其重新参数化)的数量也增加,并且估计关联结构对于此类数据至关重要。实际上,这样的数据可能太“丰富”,无法用普通的BOLM进行完全建模,而有时,著名的Dale模型可能过于简约以致无法很好地拟合。另外,当响应的交叉表包含一些零时,对于许多模型配置,包括偏比例赔率模型(PPOM)的双变量版本,通过Fisher评分算法对BOLM的估计可能会失败或估计过于“不规则”的关联结构。在这项工作中,我们建议使用非参数方法进行BOLM的最大似然估计,并对相邻行效应和列效应之间的差异进行惩罚,因此,估计比普通BOLM要求低,从而允许PPOM和/或通过多项式曲线和曲面对边际和关联参数进行平滑处理,并根据数据选择得分。模型选择基于惩罚对数似然比,并通过模拟和AIC研究了其极限分布。在拟合优度和简约性方面,我们在文献数据集上将我们的建议与Goodman模型和Dale模型进行了比较。最后,提出了在肝病患者原始数据集上的应用。

著录项

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号